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Abstract

Limited access to blood tests in underrepresented re-
gions, such as parts of South America, underscores the
need for cost-effective, non-invasive methods to identify
Chagas disease (CD) in clinical practice. Efficient use
of scarce diagnostic resources requires approaches with
high sensitivity and low false-positive rates to ensure re-
liability. To address this challenge, the PhysioNet/CinC
Challenge 2025 focused on detecting CD from 12-lead
ECG signals by leveraging CD-associated cardiac abnor-
malities and temporal features. In response, we devel-
oped a CNN-based, lead-wise feature learning model that
achieved a challenge score of 0.22 in the test phase, rank-
ing 16th out of 41 participating teams. Statistical analysis
of feature- and lead-level importance identified RR inter-
val RMSSD as significant across all leads and highlighted
the precordial (anterior chest) leads as the most discrimi-
native. These results suggest that emphasizing precordial
leads in feature engineering could further improve the ac-
curacy and generalizability of ECG-based CD detection
systems.

1. Introduction

Chagas disease (CD), caused by the protozoan Try-
panosoma cruzi, affects about six million people world-
wide [1], particularly in low-resource regions of South
America. To address this public health burden, the 2025
George B. Moody PhysioNet Challenge [2] aims to de-
velop computational tools that lessen the reliance on lim-
ited clinical expertise.

CD often leads to cardiac complications, which can be
detectable using electrocardiogram (ECG) recordings [1].
A recent study highlights the potential of convolutional
neural networks (CNNs) in detecting CD from ECG
recordings [3]. Motivated by these advances, we pro-
pose a CNN-based approach that processes lead-wise fea-
tures derived from 12-lead ECGs to detect CD on multiple
datasets.

2. Methodology

2.1. Datasets

To develop the proposed CNN model, we used three
publicly available 12-lead ECG datasets with diverse ac-
quisition protocols and patient populations:
• CODE-15% – a subset of the CODE dataset, restricted
to Part 1 [4].
• SaMi-Trop – includes only samples from Chagas-
positive subjects [5].
• PTB-XL – includes only samples from non-Chagas sub-
jects [6].

2.2. Preprocessing

First, each lead signals were individually normalized to
the range [−1, 1] using a min–max scaling function:

x′
i = −1 + 2

xi −min(x)

max(x)−min(x)
, (1)

where xi is the ith raw signal value from the original sig-
nal vector x, x′

i is the normalized value scaled to the range
[−1, 1], x denotes the full vector of raw signal values from
a single lead, min(x) is the minimum value in x, and
max(x) is the maximum value in x.

To ensure consistency across all ECG records, all 12-
lead ECG recordings were then downsampled to 100Hz.
A 0.5Hz high-pass filter was subsequently applied to sup-
press baseline wander and other low-frequency artifacts.

2.3. Feature Extraction

After the preprocessing steps, we used the NeuroKit2
Python package [7] to detect the ECG peaks, which later
were used to calculate features shown in Table 1.

The resulting feature matrix had the shape (B,L, F ),
where B = 256 (batch size), L = 12 (leads), and
F = 12 (features per lead). The dataset was split into
training, validation, and test sets in an 8:1:1 ratio, with
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Table 1. Extracted ECG features for each lead after pre-
processing.

# Feature
1 Mean QRS duration (ms)
2 Standard deviation of QRS duration (ms)
3 Mean QT interval (ms)
4 Standard deviation of QT interval (ms)
5 Mean R-wave amplitude (mV)
6 Standard deviation of R-wave amplitude (mV)
7 QRS net deflection (mV)
8 RR interval RMSSD (ms)
9 Mean P-wave amplitude (mV)
10 Standard deviation of P-wave amplitude (mV)
11 Mean P-wave duration (ms)
12 Standard deviation of P-wave duration (ms)

only 5% positive and 95% negative samples per split.
Missing values were imputed lead-wise using scikit-learn’s
IterativeImputer. All features were then standard-
ized using z-score normalization.

Figure 1. Architecture of the proposed CNN for ECG clas-
sification. The (1×L×F ) input (L = 12, F = 12) passes
through two convolutional blocks and fully connected lay-
ers for binary classification.

2.4. Proposed Architecture

The proposed model was a CNN designed to process
lead-wise feature matrices of size L × F for binary clas-
sification. It consisted of two convolutional blocks for hi-
erarchical feature extraction, followed by fully connected
layers for classification. The overall proposed model ar-
chitecture is illustrated in Fig. 1, and Table 2 summarizes
the model architecture.

2.5. Loss Functions

Two loss functions were jointly optimized during train-
ing: a class-balanced focal loss for classification, and a

Table 2. Summary of the proposed CNN architecture.
Stage Configuration
Input (B, 1, L, F )

Convolutional Block 1 2D Conv, kernel (3, 1), 32 filters
ReLU activation
Batch Normalization
Dropout (p = 0.2)

Convolutional Block 2 2D Conv, kernel (3, 1), 64 filters
ReLU activation
Batch Normalization
Average Pooling (2, 1)
Dropout (p = 0.2)

Fully Connected Layers Flatten to 3072-dimensional vector
Layer Normalization
FC: 3072 → 128
ReLU activation
Dropout (p = 0.7)
FC: 128 → 2 (output logits)

ranking hinge loss to encourage separation between posi-
tive and negative samples.

Focal loss: We used focal loss to address class im-
balance by down-weighting non-Chagas (negative) exam-
ples and focusing the training on Chagas (positive) sam-
ples. For an input logit vector z ∈ RC and a target class
y ∈ {1, . . . , C}, the focal loss is defined as:

Lfocal = −α(1− pt)
γ log(pt), (2)

where py =
exp(zy)∑C
c=1 exp(zc)

is the predicted probability for
the target class, γ > 0 (Was set it to 2) is the focusing
parameter, and αy is the class weight for class y. The class
weights αy were computed from the training set as:

αy =

{
1.0, if y = 0,
N0

N1
, if y = 1,

(3)

where N0 and N1 are the number of samples in classes
chagas negative 0 and positive 1, respectively.

Ranking hinge loss: To encourage a margin between
positive and negative predictions, we incorporated a pair-
wise ranking hinge loss:

Lrank =
1

|P ||N |
∑
i∈P

∑
j∈N

max (0,m− (si − sj)) , (4)

where P and N denote the sets of positive and negative
samples, si and sj are the predicted scores, and m > 0 is
the margin hyperparameter.

Final loss: The total loss is a weighted sum of the two
components:

Ltotal = Lfocal + Lrank, (5)

2.6. Training Environment

All experiments were conducted on an NVIDIA
RTX A6000 GPU using the AdamW optimizer with a

Page 2



weight decay of 0.1, which helped reduce overfitting. The
initial learning rate was 1 × 10−4, and training ran for
300 epochs with early stopping (patience = 50) based
on the validation score. A OneCycleLR scheduler in-
creased the learning rate linearly during the first 10% of
steps (warm-up) from ηmax/25 to ηmax, then decayed it
to ηmax/10

4 over the remaining steps, where Stotal =
Nepochs ×Nbatches.

2.7. Evaluation

We submitted our best internal model to the PhysioNet
Challenge competition. The official validation was per-
formed using the REDS-II dataset [8], while the test phase
included three datasets: REDS-II [8], SaMi-Trop 3 [9], and
ELSA-Brasil [10]. Model performance was assessed using
multiple metrics, including the Challenge score, area under
the receiver operating characteristic curve (AUROC), area
under the precision-recall curve (AUPRC), accuracy, and
F1-score.

2.8. Statistical Analysis

We computed Cohen’s d effect sizes for all 12-lead ECG
features to quantify differences between positive and neg-
ative CD cases. Statistical significance was assessed using
independent t-tests or Mann–Whitney U tests, as appropri-
ate, with Bonferroni FDR correction for multiple compar-
isons.

3. Results

3.1. Challenge Evaluation

Tables 3 and 4 show the performance of the approach
on test datasets, and the comparison of our model with the
top five teams. Our approach ranked 16th of 41 with a
challenge score of 0.22 (top score: 0.32). Our model per-
formed best on REDS-II (accuracy: 0.88, CS: 0.11) but
showed lower performance on SaMi-Trop 3 and ELSA-
Brasil, particularly in F1 (0.13, 0.05) and AUCPRC (0.08,
0.04), reflecting reduced sensitivity. AUC-ROC values
were moderate across datasets (0.56–0.71), indicating that
the model captured a predictive signal but generalized in-
consistently across cohorts.

3.2. Statistical Analysis

Our statistical analysis (Figure 2) showed that the RR
Interval RMSSD feature was significant across all 12 leads
(mean |d| = 0.38), with the largest effect in V2 (d = 0.45;
higher in positive cases). Mean P Duration and Mean P
Amplitude were significant on 11 leads, with strongest ef-
fects in lead II (d = −0.64) and V2 (d = −0.28), re-

Table 3. Performance of the model on the official valida-
tion (REDS-II) and test datasets (REDS-II, SaMi-Trop 3,
ELSA-Brasil) using the following metrics: acc (accuracy),
F1 (F1 score), AR (AUCROC), AP (AUCPRC), and CS
(Challenge Score).

Dataset Acc F1 AR AP CS
Validation
REDS-II 0.91 0.15 0.68 0.13 0.33
Test
REDS-II 0.88 0.13 0.71 0.21 0.31
SaMi-Trop 3 0.75 0.13 0.71 0.08 0.25
ELSA-Brasil 0.78 0.05 0.57 0.04 0.10
Mean 0.80 0.10 0.66 0.11 0.22
SD 0.07 0.04 0.08 0.09 0.11

Table 4. Comparison of our approach with the top five
teams based on the final Challenge Score.

Rank Challenge Score Team Name
1 0.323 Biomed-Cardio
2 0.283 DlaskaLabMUI
3 0.280 AIChagas
4 0.271 ISIBrno-AIMT
5 0.269 Ahus AIM
16 0.220 PhysioWinn

spectively, indicating lower values in positive cases. Mean
R Amplitude and Std QT Interval also showed broad dis-
criminative power (10 significant leads each), peaking at
V1 (d = −0.72) and V2 (d = 0.54).

Lead-level analysis revealed that precordial leads V3
and V5 showed significant differences across all 12 fea-
tures, while V2 and V6 were significant for 11 features.
The consistent relevance of the precordial leads (V1–V6)
suggests that the anterior chest region is particularly infor-
mative for CD detection.

4. Discussion

Our CNN-based approach achieved an average test chal-
lenge score of 0.22, demonstrating the effectiveness of
lead-wise feature learning. With kernels spanning all leads
per feature, the model captured patterns relevant to CD.
The potential of the features suggests that using graph- or
transformer-based architectures that process features spa-
tially could further improve performance.

Statistical analysis revealed that features extracted from
the precordial leads V1–V6 exhibited the highest discrim-
inative power for CD detection. This suggests that CD de-
tection could prioritize anterior chest leads, thus simplify-
ing lead configurations for screening. Future work should
focus on developing models that leverage these leads to
boost CD detection.

Page 3



Figure 2. (Left) Cohen’s d effect sizes for ECG features across 12 leads comparing Chagas-positive and controls. (Right)
Binary significance map after FDR correction (p < 0.05; 1 = significant, 0 = not). Tests: t-test or Mann–Whitney U,
depending on normality (Shapiro–Wilk) and variance equality (Levene).

5. Conclusion

This study introduces a CNN-based, lead-wise feature
learning approach for CD detection. The proposed model,
PhysioWinn, achieved an official PhysioNet Challenge
score of 0.22, ranking 16th out of 41 teams. Statistical
analysis showed that the precordial leads (V1–V6) yielded
the most discriminative features, suggesting that future
work should focus on extracting domain-specific features
from these leads to further enhance detection performance.
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